A Convexity Theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convexity Theorem and Reduced Delzant Spaces

The convexity theorem of Atiyah and Guillemin-Sternberg says that any connected compact manifold with Hamiltonian torus action has a moment map whose image is the convex hull of the image of the fixed point set. Sjamaar-Lerman proved that the Marsden-Weinstein reduction of a connected Hamitonian G-manifold is a stratified symplectic space. Suppose 1 → A → G → T → 1 is an exact sequence of compa...

متن کامل

A Convexity Theorem For Isoparametric Submanifolds

The main objective of this paper is to discuss a convexity theorem for a certain class of Riemannian manifolds, so-called isoparametric submanifolds, and how this relates to other convexity theorems. In the introduction we will present the convexity theorems. In Section 2 we will describe the geometry of isoparametric submanifolds and in Section 3 we will relate this to the geometries of the ot...

متن کامل

A convexity theorem for real projective structures

Given a finite collection P of convex n-polytopes in RP (n ≥ 2), we consider a real projective manifold M which is obtained by gluing together the polytopes in P along their facets in such a way that the union of any two adjacent polytopes sharing a common facet is convex. We prove that the real projective structure on M is 1. convex if P contains no triangular polytope, and 2. properly convex ...

متن کامل

On the Nonlinear Convexity Theorem of Kostant

A classical result of Schur and Horn [Sc, Ho] states that the set of diagonal elements of all n x n Hermitian matrices with fixed eigenvalues is a convex set in IRn. Kostant [Kt] has generalized this result to the case of any semisimple Lie group. This is often referred to as the linear convexity theorem of Kostant: picking up the diagonal of a Hermitian matrix is a linear operation. This resul...

متن کامل

Davis’ Convexity Theorem and Extremal Ellipsoids

We give a variety of uniqueness results for minimal ellipsoids circumscribing and maximal ellipsoids inscribed into a convex body. Uniqueness follows from a convexity or concavity criterion on the function used to measure the size of the ellipsoid. Simple examples with non-unique minimal or maximal ellipsoids conclude this article. MSC 2000: 52A27, 52A20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1948

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.34.9.443